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ABSTRACT
A novel data-driven reconstruction algorithm for quantum im-
age sensors is proposed. Binary observations are efficiently
decoded by modeling the reconstruction structure as a two-
layer neural network, where optimal coefficients are obtained
via error backpropagation. Such a model encapsulates the
structure of state-of-the-art algorithms, yet it presents a con-
siderably faster alternative which adapts to input examples
without a priori statistical information. Simulations on natu-
ral and synthetic datasets show accurate reconstructions with
structural similarities consistent with the state of the art, while
requiring approximately 5 times less computational cost.

Index Terms— Image reconstruction, quanta image sen-
sors, error backpropagation, MLE, Anscombe transform

1. INTRODUCTION

The constant miniaturization of camera technology allows the
fabrication of systems with less power consumption, reduced
cost and higher spatial resolution. Yet, its demand for pixels
reaching sizes below the diffraction limit of light implies a
lower well capacity: each pixel can hold less photoelectrons.
Consequently, the dynamic range and signal-to-noise ratio on
typical solid-state sensors are severely reduced [1, 2]. A solu-
tion to this issue is proposed by a novel imaging paradigm re-
ferred to as Quanta Image Sensor (QIS) [3, 4]. Based on pho-
tographic film, binary representations are obtained by special
photosensors (jots) capable of detecting a single photon. In-
formation loss by extreme quantization is neglected by largely
oversampling the light field optical resolution, discarding full-
well capacity limitations and allowing further pixel shrinkage.

The current bottleneck in the QIS implementation is the
high computational cost required to reconstruct the scene.
Since it deals with quantized Poisson random processes,
classic enhancement strategies are severely restricted. State-
of-the-art algorithms include an iterative method based on
the maximum likelihood estimation (MLE) [5]. By using the
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log-likelihood of the binary measurements as cost function, a
greedy projection method [6] is adopted to estimate the under-
lying image. Similarly, a variant [7] exploits the separability
of such a cost function via the Alternating Direction Method
of Multipliers algorithm (ADMM) [8]. A set of subproblems
is solved to estimate the underlying image with faster conver-
gence rate, while a total variation (TV) prior [9, 10] is applied
to improve the output quality. Finally, a novel reconstruction
strategy [11] applies a variance-stabilizing transformation
(VST) to convert distortions into additive noise with nor-
mal probability distribution, followed by classic denoising
methods to enforce the output smoothness.

The present work proposes a novel QIS image recon-
struction algorithm by modeling it as a simple feed-forward
neural network and adapting its weights to independent data
realizations. Inspired by state-of-the-art algorithms, a highly-
efficient parametric representation is adopted, allowing a
learning procedure via backpropagation to obtain optimal pa-
rameters without prior assumptions. Numerical evaluations
on different imaging scenarios show accurate reconstructions
comparable to the state of the art with much lower compu-
tational requirements. The rest of the paper is organized as
follows. Section 2 provides the theoretical background to
understand the algorithm. Section 3 shows a detailed de-
scription of the proposed reconstruction method. Section 4
presents experimental results on synthetic and natural images.
The conclusions are stated in Section 5.

2. THEORETICAL BACKGROUND

2.1. Binary Sensing Scheme

Without loss of generality, let c = {c0, c1, . . . , cN−1}T de-
note a set of 1D nonnegative ground-truth coefficients repre-
senting the image to be encoded. Assuming a QIS linear array
of one spatial unit x ∈ [0, 1], the captured light intensity field
is modeled as λ(x) = N

τ

∑N−1
n=0 cn · ϕQIS(Nx − n), where

τ is the exposure time and ϕQIS a nonnegative interpolation
kernel. Let the array contain M pixels, such that the mth
pixel covers the segment

[
m
M , (m+1)

M

]
, m ∈ {0, . . . ,M − 1}.

Then, by sampling λ(x), the total light exposure value sm =



Fig. 1. QIS imaging scheme for ϕQIS(x) = β(x) and q = 1.

(a) MLE algorithm.

(b) Non-iterative reconstruction algorithm.

Fig. 2. Conventional QIS image reconstruction algorithms for
ϕQIS(x) = β(x), and q = 1.

α ·
∑N−1
n=0 cn · gm−Kn is obtained, where α is a gain factor,

gm is a linear filter defined as the standard L2 inner product
between ϕQIS(x) and β(Kx − m), K , M

N is the spatial
oversampling factor, and β(x) is the box function:

β(x) =

{
1 , 0 ≤ x ≤ 1

0 , other cases
. (1)

Particularly, for ϕQIS(x) = β(x), gm corresponds to:

gm , 〈ϕQIS(x), β(Kx−m)〉 =

{
1
K , 0 ≤ m < K

0 , other cases
. (2)

To create the binary output, photons hitting each pixel
surface are counted and denoted by ym, which corresponds
to realizations of a Poisson random variable Ym: P(Ym =

ym, sm) =
symm e−sm

ym! , ym ∈ Z+ ∪ {0}. The output is then
defined as bm , Q(ym), where Q(y) is a binary quantifier
with an integer threshold q:

Q(y) =

{
1 , y ≥ q
0 , other cases

. (3)

Consequently, for random variable Bm , Q(Ym), the proba-
bility distribution pbm(s) , P(Bm = bm, sm), is defined by:
p0(s) ,

∑q−1
k=0

sk

k! e
−s, p1(s) , 1 −

∑q−1
k=0

sk

k! e
−s. Figure 1

describes the imaging model for ϕQIS(x) = β(x) and q = 1.
For the rest of the paper, this will be the scenario of interest.
Likewise, K is assumed to be an integer greater than 1.

2.2. QIS Image Reconstruction Algorithms

2.2.1. Maximum Likelihood Estimation

Let sm be written in matrix-vector notation as sm = αeTmGc
for a proper G ∈ RM×N and the mth standard Euclidean ba-

Fig. 3. Proposed two-layer reconstruction algorithm.

sis vector em (1 in the mth position, 0 elsewhere). Given the
log-likelihood function `b(c) ,

∑M−1
m=0 log

(
pbm(αeTmGc)

)
,

where b = {b0, . . . , bM−1}T , and c ∈ [0, S]N for some up-
per bound S, the image is decoded by iteratively solving [5]:

ĉML(b) , argmax
c∈[0,S]N

`b(c). (4)

Specifically, if ϕQIS(x) = β(x) and q = 1, sm becomes
piecewise constant: sm = cn

K ,m ∈ {nK, . . . , (n+1)K−1}.
As a result, coefficients {cn} can be estimated independently
of each other by maximizing the likelihood function of ob-
serving a subset of K binary outputs, as follows [5, 11]:

ĉn(b) =

{
−Kα log

(
1− L1

n

K

)
, 0 ≤ L1

n ≤ K
(
1− e(−αSK )

)
S , other cases

,

(5)
where L1

n ,
∑K−1
k=0 bKn+k is the sum of 1’s in the subset.

2.2.2. Non-Iterative Reconstruction Algorithm

A denoising strategy [11] is incorporated to the MLE solution
for ϕQIS(x) = β(x) and q = 1. Let the Anscombe transform
T and its algebraic inverse T −1 be defined by [12]:

Zn = T {Xn} ,
(
K +

1

2

) 1
2

sin−1

[(
Xn + 3

8

K + 3
4

) 1
2
]
, (6)

Xn = T −1{Zn} ,
(
K +

3

4

)
sin2

[
Zn

(K + 1
2 )

1
2

]
− 3

8
, (7)

where Xn and Zn are binomial and approximately-Gaussian
random variables, respectively. For a large K, L1

n is an
approximately-Gaussian random variable with nonstation-
ary variance. Then, variance stabilization via the Anscombe
transform is applied to L1

n, converting distortions into i.i.d.
Gaussian random noise and allowing the use of classic denois-
ing methods. Figure 2 shows both reconstruction algorithms.

3. PROBLEM FORMULATION

3.1. Parametric Representation and Optimality Criterion

A two-layer structure comprised of a concatenation of linear-
shift-invariant systems and pointwise nonlinearities is pro-
posed. Figure 3 describes the suggested structure, which
consists of the following components: (i) a downsampling
process of factor K, which implies an effective downsam-
pling factor of K̂ ,

√
K in each dimension [11], (ii) two lin-

ear, shift-invariant systems, h1,m,n ∈ RMh1
×Nh1 , h2,m,n ∈



Fig. 4. Proposed learning approach based on the MMSE.

RMh2
×Nh2 , and (iii) two pointwise nonlinearities ϕ1(·),

ϕ2(·), parametrized by: ϕi(z) =
∑
k wi,k · β3

(
z

∆i
− k

)
,

where wi,k ∈ RNwi are the expansion coefficients, the basis
function β3 corresponds to cubic B-splines [13], and ∆i ∈ R
is a scaling factor. Therefore, the system is characterized by:

ĉm,n =
∑
k

w2,k · β3

{
rm,n
∆2
− k
}
, (8)

rm,n =
∑
s,t

h2,s,t · qm−s,n−t, (9)

qm,n =
∑
k

w1,k · β3

{
pm,n
∆1
− k
}
, (10)

pm,n =
∑
s,t

h1,s,t · bK̂m−s,K̂n−t. (11)

The fine-tuning of each parameter based on backpropa-
gation is similar to the online trainable structures presented
in [14, 15, 16]: motivated by well-established QIS recon-
struction schemes, a parametrized feed-forward architecture
is adapted to the probability distribution of a representative
training set, expressed as {b`, c∗`}, ` ∈ {0, L − 1}. Subse-
quently, for the scope of this work, we are interested in the
minimum mean-square error (MMSE) as optimal criterion.
Figure 4 describes the proposed optimization scenario.

Let the system components be expressed in vector form as
h1 ∈ R(Mh1

×Nh1
)×1, w1 ∈ RNw1

×1, h2 ∈ R(Mh2
×Nh2

)×1,
w2 ∈ RNw2

×1, where the 2D linear systems are sorted in
column-wise order. Then, let a = vec({h1,w1,h2,w2})
be the column vector formed by their concatenation. Conse-
quently, the optimal system parameters are defined by:

â = argmin
a∈A

1

L

∑
`

ε(a,b`, c
∗
` ), (12)

where A is the set of possible solutions and the cost function
is defined as ε(a,b, c∗) , 1

2 ||c
∗ − ĉ(a,b)||2`2 .

3.2. Optimization Problem and Algorithm Initialization

The greedy projection method is adopted to estimate the op-
timal parameters [6]. Let ĉ(a) be the vectorized version of

system output ĉm,n for parameters a, sorted in column-wise
order. Then, â can be iteratively computed as:

a(i) = proj
A

{
a(i−1) − µ∇ε

(
a(i−1)

)}
, (13)

where projA is an orthogonal projection operator onto set A
and µ the step size. For each cost function in (12), the gradient
∇ε(a) and the Jacobian matrix d

da ĉ(a) are expressed as:

∇ε(a) =

[
d

da
ĉ(a)

]T
(ĉ(a)− c∗), (14)

d

da
ĉ(a) ,

[
dĉ(a)

dh1
,
dĉ(a)

dw1
,
dĉ(a)

dh2
,
dĉ(a)

dw2

]
. (15)

Finally, by differentiating ĉm,n w.r.t. each system component,
the error backpropagation is determined by:

dĉm,n
dh1,s,t

= ϕ′2(rm,n) ·
∑
ŝ,t̂

h2,m−ŝ,n−t̂ · ϕ
′
1{pŝ,t̂} · bK̂ŝ−s,K̂t̂−t︸ ︷︷ ︸

,z(s,t)
ŝ,t̂

= ϕ′2(rm,n) ·
(
h2 ∗ z(s,t)

)
m,n

, (16)

dĉm,n
dw1,k

= ϕ′2(rm,n) ·
∑
ŝ,t̂

h2,m−ŝ,n−t̂ · β3

{
pŝ,t̂
∆1
− k
}

︸ ︷︷ ︸
,α(k)

ŝ,t̂

= ϕ′2(rm,n) ·
(
h2 ∗ α(k)

)
m,n

, (17)

dĉm,n
dh2,s,t

= ϕ′2(rm,n) · qm−s,n−t, (18)

dĉm,n
dw2,k

= β3

{
rm,n
∆2
− k
}
, (19)

where ϕ′(z) is the derivative of ϕ w.r.t. z.
Initial weights a(0) are set according to the non-iterative

reconstruction algorithm with a lowpass filter as denoising
method. For the 2D scenario, let L1 be re-defined as: L1

m,n ,∑K̂−1
s=0

∑K̂−1
t=0 bK̂m+s,K̂n+t. Then, by associating it to the

sum of 1’s in a region of K̂ × K̂ pixels followed by down-
sampling, h1,m,n is initialized as:

h
(0)
1,m,n =

{
1, −K̂ < m < 1 ∧ −K̂ < n < 1

0, other cases
. (20)

h2,m,n is initialized as a Gaussian lowpass filter with standard
deviation σ heuristically selected between [0.25, 1]. ϕ1(z) is
initialized as the Anscombe transform T . Finally, ϕ2(z) is
initialized as the inverse Anscombe transform T −1, followed
by the logarithmic function − log(1 − x

K ) and the factor K
α :

ϕ
(0)
2 (z) = −Kα log

(
1− T

−1(z)
K

)
.

4. SIMULATION RESULTS

Simulations are reported on synthetic and natural images for
K = {32, 42 . . . , 102}. For the synthetic scenario, c∗ is gen-
erated as a 32 × 32 random matrix with standard uniform
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Fig. 5. Gradient descent for the synthetic scenario (K = 36).
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(b) Natural scenario.

Fig. 6. Learning process for synthetic and natural scenarios.

distribution. For the natural scenario, the Cifar-10 dataset
[17] (5 · 104 training samples and 104 test samples of 32 ×
32 pixels) is considered. Reconstruction quality is measured
by the signal-to-noise ratio (SNR), peak signal-to-noise ratio
(PSNR), and structural similarity (SSIM) [18]. The experi-
mental setup is as follows: step size µ = 5 · 10−6, scaling
factor α = K, itermax = 104. Linear systems h1 and h2 are
of dimensions K̂ × K̂ and 15 × 15, respectively. Expansion
coefficients w1, and w2 have both 150 elements. Basis func-
tions for ϕ1 and ϕ2 are spreaded uniformly over the dynamic
range of pm,n and rm,n, respectively.

For synthetic images, online learning is performed using
128 training samples per iteration and a test set of 512 sam-
ples. Figure 5 describes the cost function values and its gradi-
ent norm at each iteration for K = 36. Both functions show
a decreasing behavior with minor oscillations, which reflects
the reconstruction improvement along the learning procedure.
Figure 6a describes the average PSNR of the reconstructed
data set for different K values. Despite the natural improve-
ment for large oversampling values, PSNR increases for all
K, with its largest gain corresponding to 1.7 dB for K = 9.

For natural images, c∗ corresponds to the grayscale ver-
sion with normalized intensity of a test sample. Online learn-
ing is performed using 128 training samples per iteration. Fig-
ure 6b describes the average PSNR of the reconstructed data
set for different K values. The improvement is more promi-
nent than in the former case, with a maximum gain of 3.2 dB
for K = 9. Also, performance on larger images is evaluated
on the Berkeley Segmentation Dataset [19] (200 training sam-
ples and 100 test samples of 481 × 321 pixels) for K = 16,
µ = 5 · 10−8, and the described setup. Figure 7 shows re-

(a) MLE output.
SNR= 8.29 dB

PSNR= 16.34 dB
SSIM= 0.37

(b) NI output.
SNR= 15.58 dB

PSNR= 23.63 dB
SSIM= 0.55

(c) MMSE output.
SNR= 15.51 dB

PSNR= 23.56 dB
SSIM= 0.60

(d) MLE output.
SNR= 8.87 dB

PSNR= 13.28 dB
SSIM= 0.37

(e) NI output.
SNR= 15.78 dB

PSNR= 20.19 dB
SSIM= 0.41

(f) MMSE output.
SNR= 15.6 dB

PSNR= 20.01 dB
SSIM= 0.51

Fig. 7. Reconstruction accuracy for the proposed algorithm
and alternative methods on natural images (K = 16).

sults for the proposed algorithm (MMSE), the maximum like-
lihood estimation (MLE) and the non-iterative method (NI)
with BM3D as denoising algorithm [20]. Despite consider-
able information loss for such a small K value, MMSE yields
results comparable with NI, which applies a more complex
denoising method, while better preserving the scene structure.

Finally, processing time is compared using Matlab-only
code (1.2 GHz Intel core i7, L2: 256K, RAM: 4G) for K =
16 and the described setup on the Berkeley dataset. On aver-
age, MLE requires 52 ms to process a single sample, whereas
NI and MMSE require 2377 ms and 453 ms, respectively.
This shows that the proposed algorithm achieves a compa-
rable reconstruction quality but is 5.25 times faster than NI.

5. CONCLUSIONS

The proposed QIS image reconstruction algorithm obtains ac-
curate estimations consistent with state-of-the-art methods,
while showing a more efficient design. Its main contribution
relies on its adaptive nature: modeled as a simple neural net-
work, optimal components are learned directly from examples
without any statistical assumptions, achieving reconstructions
with coherent structural similarity 5 times faster than alterna-
tive methods, as experimentally demonstrated. Further work
will focus on adding layers in the structure while preserving
its computational efficiency, in order to explore more complex
initial settings and alternative binary sensing scenarios.



6. REFERENCES

[1] Eric R Fossum, “What to do with sub-diffraction-limit
(SDL) pixels?—A proposal for a gigapixel digital film
sensor (DFS),” in IEEE Workshop on Charge-Coupled
Devices and Advanced Image Sensors, 2005, pp. 214–
217.

[2] Eric R Fossum, “Modeling the performance of single-
bit and multi-bit quanta image sensors,” IEEE Journal
of the Electron Devices Society, vol. 1, no. 9, pp. 166–
174, 2013.

[3] Eric R Fossum, “The Quanta Image Sensor (QIS): Con-
cepts and Challenges,” in Imaging and Applied Optics.
2011, Optical Society of America.

[4] Luciano Sbaiz, Feng Yang, Edoardo Charbon, Sabine
Susstrunk, and Martin Vetterli, “The gigavision cam-
era,” in Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on. IEEE,
2009, pp. 1093–1096.

[5] Feng Yang, Yue M Lu, Luciano Sbaiz, and Martin Vet-
terli, “Bits from photons: Oversampled image acquisi-
tion using binary poisson statistics,” IEEE Transactions
on image processing, vol. 21, no. 4, pp. 1421–1436,
2012.

[6] Martin Zinkevich, “Online Convex Programming and
Generalized Infinitesimal Gradient Ascent,” in Machine
Learning, Proceedings of the Twentieth International
Conference (ICML 2003), August 21-24, 2003, Wash-
ington, DC, USA, 2003, pp. 928–936.

[7] Stanley H Chan and Yue M Lu, “Efficient image re-
construction for gigapixel quantum image sensors,” in
Signal and Information Processing (GlobalSIP), 2014
IEEE Global Conference on. IEEE, 2014, pp. 312–316.

[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
and Jonathan Eckstein, “Distributed optimization and
statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine
Learning, vol. 3, no. 1, pp. 1–122, 2011.

[9] Leonid I Rudin, Stanley Osher, and Emad Fatemi,
“Nonlinear total variation based noise removal algo-
rithms,” Physica D: Nonlinear Phenomena, vol. 60, no.
1-4, pp. 259–268, 1992.
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