Renán A. Rojas-Gómez

1308 W. Main Street, Urbana, IL ☑ renanar2@illinois.edu � renanar2.web.illinois.edu ♥ renanrojasg

Education

Ph.D. Candidate in Electrical and Computer Engineering	Illinois, USA
Computational Imaging Group, University of Illinois at Urbana-Champaign	2018 - Present
Advisor: Prof. Minh N. Do.	
M.Sc. in Digital Signal and Image Processing	Lima, Peru
Pontifical Catholic University of Peru	2010 - 2011
Thesis: Automatic Regularization Parameter Selection for Total Variation Image Restoration.	
B.Sc. in Electrical Engineering	Lima, Peru
Pontifical Catholic University of Peru	2003 - 2008
Thesis: Efficient Image Alignment for Precision Farming Applications.	

Research Interests

Deep learning, computer vision, signal and image processing.

Programming Skills

PyTorch, TensorFlow, Python, Матlab, Linux.

Research Experience

Research Intern, Google	California, USA
Semantic-aware data augmentation for self-supervised learning via neural style transfer	05/2023 - 12/2023

- Developed a novel semantic-aware data augmentation technique for self-supervised learning using neural style transfer, improving representation learning in established techniques like SimCLR, BYOL, and MoCo.
- Improved downstream classification performance accuracy compared to traditional augmentation methods.
- Demonstrated significant transfer learning performance improvement across various datasets.

Research Assistant, University of Illinois at Urbana-Champaign (UIUC)	Illinois, USA
Cell classification via coherent Raman microscopy and multiphoton imaging	02/2022 - 05/2023

- Designed a semi-supervised machine learning algorithm to classify cells based on their Self-amplifying mRNA (SAM) vaccine uptake.
- Combined multiphoton and hyperspectral imaging to study the spatial distribution and functional activity of vaccine uptake and expression.
- Enhanced cell classification under different uptake conditions by leveraging hyperspectral image features.

Research Intern, Bosch Center for Artificial Intelligence	Pennsylvania, USA
One-shot traffic sign classification via deep learning color quantization	05/2021 - 08/2021

- Developed a deep learning color quantization method for traffic sign classification and recognition tasks.
- Improved one-shot classification via integration with metric learning methods and VAEs.
- Published US patent.

Research Assistant, University of Illinois at Urbana-Champaign

Wavelet-based photorealistic style transfer for colorization of indoor environments

- Developed a novel wavelet-based photorealistic style transfer algorithm.
- Implemented a highly efficient stylization method matching the performance of neural approaches while significantly reducing the computational burden.
- Developed an interactive web-based scene colorization tool for commercial applications.

Research Intern, Los Alamos National Laboratory (LANL)

Physics-consistent data-driven waveform inversion with adaptive data augmentation

- Developed a novel deep learning method for seismic full-waveform inversion, enabling high-resolution estimation of geophysical velocity models.
- Proposed a physics-informed data augmentation technique that injects realistic seismic variations into the training samples, improving transfer learning performance.
- Achieved superior accuracy in recovering the subsurface elastic parameters compared to established approaches.

Visiting Scholar, Harvard University School of Engineering and Applied Sciences	Massachusetts, USA 01/2018 - 03/2018
 Project: Efficient Quanta Image Sensor Reconstruction Algorithms. Funded by the UTEC-Harvard Academic Collaboration Fund 2015-03. 	
Visiting Scholar, University of Rochester Sonoelasticity Imaging Laboratory	New York, USA 01/2015 - 03/2015
 Project: Nonstationary signal modeling and ultrasound image analysis for breast c Funded by Peruvian Grant 205-FINCyT-IA-2013. 	ancer detection.
Summer Intern, Los Alamos National Laboratory <i>T5: Applied Mathematics and Plasma Physics</i>	New Mexico, USA 06/2011 - 08/2011
 Project: Efficient Total Variation Mixed Noise Image Restoration Techniques. Funded by Peruvian Grant 179-FINCyT-IB-2013. 	
Research Assistant, Pontifical Catholic University of Peru (PUCP) <i>Electrical Engineering Section</i>	Lima, Peru 2010 - 2014

- Developed an AM-FM based nonstationary signal modeling algorithm for sonoelasticity imaging.
- Collaborated on a GPU-based video stabilization algorithm for real-time traffic analysis.

Teaching Experience

Lecturer, University of Engineering and Technology (UTEC)	Lima, Peru
Electrical Engineering Department	2014 - 2018

Illinois, USA 01/2019 - 06/2021

New Mexico, USA

06/2019 - 08/2019

■ EL5002: Signals and Systems (7 semesters).

Lecturer, Pontifical Catholic University of Peru

Electrical Engineering Section and Graduate School

- IEE239: Digital Signal and Image Processing (8 semesters).
- IEE144: Logic Design (2 semesters).
- MTR608: Computer Vision (1 semester).
- ING607: Research Tools Seminar (1 semester).
- MAT787: Optimization Theory (1 semester).
- IEE146: Logic Design Laboratory (8 semesters).

Thesis Advising:

- Stefanni E. Corrales, "Reconocimiento de actividades humanas mediante una cámara usando procesamiento de imágenes con aplicaciones en seguridad ciudadana," B.Sc. thesis, 2015.
- Alberto H. Inafuku, "Diseño de un algoritmo de estabilización de video orientado a la detección de personas," B.Sc. thesis, 2015.

Industry Experience

Project Engineer, Refineria La Pampilla, Repsol (Petroleum Refining Company)Lima, PeruEngineering and Maintenance Department2008

- Selection of ultrasonic-based flux measurement instruments.
- Design of piping and instrumentation diagrams.
- Maintenance of power and control circuits.

Publications

Under Submission

[1] R. Rojas-Gomez, K. Singhal, A. Etemad, A. Bijamov, W. Morningstar, and P. Mansfield. Sassl: Enhancing self-supervised learning via neural style transfer. In *The 41st International Conference on Machine Learning (ICML)*, 2024.

Conference Articles

- [2] R. Rojas-Gomez, T. Lim, M. Do, and R. Yeh. Making vision transformers truly shift-equivariant. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- [3] R. Rojas-Gómez, T. Lim, M. Do, A. Schwing, and R. Yeh. Learnable polyphase sampling for shift invariant and equivariant convolutional networks. In *Advances in Neural Information Processing Systems* (*NeurIPS*), volume 36, 2022.
- [4] R. Rojas-Gómez, R. Yeh, M. Do, and A. Nguyen. Inverting adversarially robust networks for image synthesis. In *16th Asian Conference on Computer Vision (ACCV)*, 2022.
- [5] R. Rojas-Gómez, J. Yang, Y. Lin, J. Theiler, and B. Wohlberg. Physics-Consistent Data-driven Seismic Inversion with Adaptive Data Augmentation. In *NeurIPS Workshop on Machine Learning and the Physical Sciences*, 2020.

- [6] R. Rojas, W. Luo, V. Murray, and Y. Lu. Learning optimal parameters for binary sensing image reconstruction algorithms. In *Conference on Image Processing (ICIP)*, 2017 IEEE International, Beijing, China, 2017.
- [7] R. Rojas, J. Ormachea, K.J. Parker, and B. Castaneda. Shear wave estimation using null space pursuit and AM-FM demodulation. In *Ultrasonics Symposium* (*IUS*), 2015 *IEEE International*, pages 1–4, 2015. DOI: 10.1109/ULTSYM.2015.0378.
- [8] J. Ormachea, R. Rojas, P. Rodriguez, R. Lavarello, K. Parker, and B. Castaneda. Shear Wave Speed Estimation from Crawling Wave Sonoelastography: A comparison between AM-FM Dominant Component Analysis and Phase Derivation Methods. In *Ultrasonics Symposium (IUS)*, 2014 IEEE International, pages 2327–2330. IEEE, 2014. DOI: 10.1109/ULTSYM.2014.0580.
- [9] R. Rojas, J. Ormachea, A. Salo, P. Rodríguez, A. Lerner, and B. Castaneda. Crawling Waves Speed Estimation Based on Dominant Component Analysis AM-FM Demodulation. In *Twelfth International Tissue Elasticity Conference*, Lingfield, UK, 2013.
- [10] P. Rodríguez, R. Rojas, and B. Wohlberg. Mixed Gaussian-Impulse Noise Image Restoration Via Total Variation. In *IEEE International Conference on Acoustics, Speech, and Signal Processing*, pages 1077–1080, Kyoto, Japan, 2012. DOI: 10.1109/ICASSP.2012.6288073.
- [11] R. Rojas and P. Rodríguez. Spatially Adaptive Total Variation Image Denoising Under Salt and Pepper Noise. In *European Signal Processing Conference*, pages 278–282, Barcelona, Spain, 2011. ISSN: 2076-1465.

Journal Articles

- [12] R. Rojas-Gómez, J. Yang, Y. Lin, J. Theiler, and B. Wohlberg. Physics-consistent data-driven waveform inversion with adaptive data augmentation. *IEEE Geoscience and Remote Sensing Letters*, pages 1–5, 2020. DOI: 10.1109/LGRS.2020.3022021.
- [13] R. Rojas, J. Ormachea, A. Salo, P. Rodríguez, K. Parker, and B. Castaneda. Crawling Waves Speed Estimation Based on the Dominant Component Analysis Paradigm. *Ultrasonic imaging*, 2015. DOI: 10.1177/0161734614568651.
- [14] R. Rojas-Gomez, K. Bera, P. Mukherjee, C. Snyder, E. Aksamitiene, A. Alex, D. Spillman, M. Marjanovic, A. Shabana, R. Johnson, S. Hood, and S. Boppart. Probing delivery of a lipid nanoparticle encapsulated self-amplifying mrna vaccine using coherent raman microscopy and multiphoton imaging. *Nature Scientific Reports*, 2024.

Patents

[15] Mohammad Sadegh Norouzzadeh, Renan Alfredo Rojas-Gomez, Anh Nguyen, and Filipe J Cabrita Condessa. Image quantization using machine learning, June 15 2023. US Patent App. 17/546,391.

Scholarships and Awards

- Rambus Computer Engineering Fellowship (UIUC), 2024-25.
- Thomas and Margaret Huang Award for Graduate Research (UIUC), 2023-24.
- Dan Vivoli Endowed Fellowship (UIUC), awarded three times: 2020-21, 2022-23, 2023-24.
- Mavis Future Faculty Fellowship (UIUC), 2021-22.

- J. William Fulbright Fellowship, 2018-19.
- IEEE International Conference on Image Processing (ICIP) Travel Grant, 2017.
- University of Engineering and Technology (UTEC) Travel Grant, 2017.
- Research Funding for Graduate Students Award (PUCP), 2011.
- Master Program Fellowship (PUCP), 2010-11.